
Copyright © <Dates> by <Authors>. All Rights Reserved.

UOS Programmer's
Manual

UOS Programmer's Manual

2 / 10

Table of contents

Title Page .. 3
Preface ... 3
Overview .. 3
User Interface .. 4

UUI .. 4
TUUI Class .. 4
TUUI_Component Class .. 5
UUI Definitions .. 6

UOS Programmer's Manual

3 / 10

Title Page

UOS Programmer's Manual

October 2023

Created with the Personal Edition of HelpNDoc: Easy EPub and documentation editor

Preface

Preface

This document is intended for people writing programs to run on UOS.

Created with the Personal Edition of HelpNDoc: Easy EBook and documentation generator

Overview

Overview

UOS is a flexible, general-purpose, multi-user system that supports high integrity and dependability along
with the benefits of being open source.

UOS is designed to provide software compatibility across all the processors on which it runs. Different
hardware architectures may make binary compatibility impossible, but compatible compilers should compile
code on all platforms without logic changes.

UOS is backward compatible with earlier versions of UOS so that programs that run on one version will run
on all future versions, including UCL scripts.

UOS is programming language-agnostic; any compiler/interpreter should be able to use the UOS services
without difficulty.

Run-Time Libraries

UOS provides several language-independent procedures and services for programs. These procedures
adhere to the UOS calling standard and include the following sets of Run-Time Library routines:

· LIB. General library routines, including common I/O procedures.

· DMG. Device-independent display management.procedures

· FS. File System File support procedures

· Hash. Hashing and encryption procedures.

· LBR. Librarian procedures.

UOS system services are provided by the UOS executive and perform operations such as file access,
process management, symbol management, and device I/O. At run time, the calling program passes
control of the process to the system service, which performs the requested operation and then returns
control to the program.

Created with the Personal Edition of HelpNDoc: Free PDF documentation generator

http://www.helpndoc.com
http://www.helpndoc.com
http://www.helpndoc.com

UOS Programmer's Manual

4 / 10

User Interface

User Interface

There are two possible user interfaces for UOS: the console interface and the Graphical User Interface. The
differences between these can be somewhat mitigated by using the Universal User Interface (UUI).

Created with the Personal Edition of HelpNDoc: Generate Kindle eBooks with ease

UUI

UUI

The UUI is a facility used by most UOS system programs which provides a consistent way to easily create
a command line/graphical user interface. UUI is controlled by a text definition that the program passes to
UUI. In a graphical environment, the definition is used to create the graphical elements of the UI.

Created with the Personal Edition of HelpNDoc: Free help authoring tool

TUUI Class

TUUI Class

The UUI is implemented via the TUUI class, which has the following methods:

Clear
procedure Clear

This procedure clears the user interface.

Execute
function Execute(Name : PChar = nil) : boolean
bool Execute(char* Name)

This procedure stars the user interface, using the command line to fill the values of the components. It exits
upon completion of parsing the command line. If no command line is provided, it will exit when the user
requests an exit or if an error occurs. If it exits due to an error, the result will be false, otherwise it will be
true.

If there is only one input component, the method returns as soon as that item is provided by either the user
or the command line. If there is no command line, the user will be prompted. The way the prompt is derived
is as follows.

If the input component is contained within a parent component, a label component is searched for within the
parent. Otherwise, all components are searched. The prompt is derived from the only label component found
in the search. If no label component (or multiple label components) is defined, the prompt will be taken from
the $prompt variable, if defined. The prompt is prefixed with an underscore (_) when displayed to the user.

If a non-null name is passed to the routine, only the component with that name is executed.

Get_Component_By_Name
function Get_Component_By_Name(X : PChar) : TUUI_Component TUUI_Component
Get_Component_By_Name(char* X)

Returns an instance of a UUI component whose name matches the passed name. Nil is returned if the
component wasn't found.

http://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
http://www.helpndoc.com/help-authoring-tool

UOS Programmer's Manual

5 / 10

Definition
property Definition : PChar

Returns/sets the UI definition. Error is set if there was an error compiling the definition. Setting the definition
clears any previous UI definition.

Error
function Error : PChar
char* Error()

Returns the text of the last error. It returns null if there is no error.

Error_Line
function Error_Line : PChar
char* Error_Line()

Returns the text of the source line that causes the last error. The return value is undefined if there was no
error.

Get_Variable
function Get_Variable(N : PChar) : PChar
char* Get_Variable(char* N)

Returns the value of the passed variable. Null is returned if the variable isn't defined. The only default variable
is $margin, which defaults to 8.

Set_Variable
procedure Set_Variable(N, V : string)
void Set_Variable(char* N, char* V)

Sets the value of the variable named by N to the value specified by V. If the variable isn't defined, it is
created.

Created with the Personal Edition of HelpNDoc: Easily create Help documents

TUUI_Component Class

TUUI_Component class

TUUI_Component encapsulates a UUI component. These are created as a result of setting the UI Definition
in a TUUI instance. Components can be broadly categorized as either input components or display
components.

Input components
Input components are those that are directly changed by interaction of the user or via the command line.
TUUI_Action represents an operation that can be performed.
TUUI_Boolean represents a boolean value.
TUUI_Integer represents an integer value provided by the user.
TUUI_List represents an text value that is one of a list of valid values.
TUUI_String represents a single line of text provided by the user.

Display components
Display components don't usually have direct user interaction and are used for layout and/or informational
purposes.

TUUI_Label represents static text. This usually doesn't show in a command line interface, unless a prompt
is needed.

http://www.helpndoc.com/feature-tour

UOS Programmer's Manual

6 / 10

TUUI_Rectangle represents a rectangular area. This is ignored in a command line interface.

All TUUI_Components have the following properties:

Property Value Description

False_Hin
t

PChar Hint for a boolean component when it is not selected

Flags Cardinal Flags

Left Integer The left pixel of the component

Height Integer The height of the component

Hint PChar Hint for the component

Inverse PChar Name of the inverse component

List TStringList Valid items for the component

Maximum Integer Maximum valid value

Minimum Integer Minimum valid value

Name PChar Name of the component

Parent TUUI_Compon
ent

The parent (containing) object of this component

Selected Boolean True if boolean item is selected

Text PChar Text value of the component

Top Integer The top pixel of the component

True_Hint PChar Hint for a boolean component when it is selected

UUI Boolean True if the current value/state of the component was set by UUI from the
command line when it was executed.

Width Integer The width of the component

Created with the Personal Edition of HelpNDoc: Create iPhone web-based documentation

UUI Definitions

UUI Definitions

The UUI UI definition is a text source consisting of one item per line. Blank lines are ignored and leading and
trailing spaces are ignored. A line ends with a combination of one or more CR (ASCII 13) and/or LF (ASCII
10) characters.

The definition source defines one or more components, each of which contain various attributes. Undefined
attributes are assigned a default value. A component can be nested within any other component.

A component definition starts with a line of the following format:

object name:type

where "name" is the component name and "type" is the component type. Component names must contain
only alphanumeric and dollar signs ($) or underscores (_). Component names are case-insensitive and must
be unique within the UI definition. The component type can be one of the following:

Type Category Class Description
boolean Input TUUI_Boolean A true/false item (such as a checkbox).
integer Input TUUI_Integer An integer value.
label Display TUUI_Label Static text.
list Input TUUI_List A list of possible values.
operation Input TUUI_Action An operation (such as a button or menu item).
rectangle Display TUUI_Rectangle Rectangular area.

http://www.helpndoc.com/feature-tour/iphone-website-generation

UOS Programmer's Manual

7 / 10

string Input TUUI_String single line of text.
A component definition ends with a line consisting of:
end

Between the object and end lines, other objects can be defined and/or attributes set. Although examples are
shown with indentation, the indentation is entirely to make the definition easier to read - it is ignored by UUI.

Attribute lines have the format:

attributename = value

where "attributename" is the name of one of the valid component attributes and "value" is the value for that
attribute. If the value is text, it must be delimited with single or double quotes. If the value is numeric, it can
be a number or an expression. Note that case is ignored except within quotes. The following list of attributes
are common to all components. Attributes with the "GUI only" note indicate that the attribute only has an
effect in a GUI interface.

Attribut
e

Value type Applies
to

Description

allownul
l

boolean strings True to allow the text to be null. Defaults to true. Only applies to text/string
input components - ignored on all others.

falsehin
t

text boolean
s

Popup hint to show when a boolean component is not selected. GUI only.

hint text all Popup hint to show. Defaults to null. GUI only.

inverse component
name

boolean
s

Name of boolean component that represents the opposite of this
component. Only applies to boolean components.

left integer all Pixel position of left side of component relative to its parent's left side.
Defaults to 0. GUI only.`

list list lists A list of items, delimited by commas.

maximu
m

integer integers Maximum value for an integer component. Has no meaning for other types
of components.

minimu
m

integer integers Minimum value for an integer component. Has no meaning for other types
of components.

selecte
d

boolean boolean
s

True if item is selected/checked/active/set. Only has meaning for boolean
components.

text text all Text of component. Defaults to null.

top integer all Pixel position of top side of component relative to its parent's top. Defaults
to 0 GUI only.

truehint text boolean
s

Popup hint to show when a boolean component is selected. GUI only.

type text lists Indicates options for the component. For list components, this can be
"constrained" to mean that the component's value must be one of the
items in the list.

visible boolean all True for component to be visible. Default is true. GUI only.

width integer all Width of component, in pixels. Defaults to the actual width of the text or
image. GUI only.

Boolean values
Boolean values are either "True" or "False".

Integer values
Integer values must be numeric. If they contain fractional parts, they will be truncated to an integer value.
The value may be an expression that evaluates to a number. See the appendix on Numeric Expressions for
details.

List values

UOS Programmer's Manual

8 / 10

List values are a series of values, separated by commas. Any string values must be included within quotes.

Text values
Text values must be delimited by either single (') or double (") quotes.

Here is an example UUI defintion:

object Main:rectangle
 top = 2
 object label:label
 text = "Name:"
 top = $margin
 left = $margin
 end
 object name:string
 hint = "Name"
 top = $margin
 left = label.width + $margin
 allownull = false
 end
end

Note: the spaces around the equal signs are not required.

Numeric Expressions

The basic format of a numeric expression is:

term operator term

where "term" is a number, a variable, a function, a constant, or two terms separated by an operator.
"operator" is a arithmetic operator. The following arithmetic operators are available:

Operato
r

Description

! Factorial (do a factorial of the previous value)

% Percentage (divide the previous value by 100)

* Multiply

/ Divide

^ Exponentiation

+ Addition (or unary plus)

- Subtraction (or unary minus)

Round to the specified number of digits. If rounded to a negative number, it is rounded to the right
of the decimal point.

D Random Gaussian distribution. For instance, 2D10 will return a random integer between 1 and 10,
plus a random integer between 1 and 10 (ie a value between 2 and 20).

MOD Division remainder only

MIN Return left side value if greater than the right side value, otherwise, return the right side value

MAX Return left side value if less than the right side value, otherwise, return the right side value

Note that all operators operate on two values except for unary plus, unary minus, percent, and factorial.

The following integer bit operators are available:

Operato
r

Description

UOS Programmer's Manual

9 / 10

NOT 1's-complement inversion.

AND Bitwise AND

OR Bitwise OR

XOR Bitwise exclusive-OR

NAND Bitwise NOT AND

NOR Bitwise NOT OR

XNOR Bitwise NOT XNOR

Constants
PI is a predefined constant equal to 3.14159265...

Functions
Functions have the form:

FUNCTION(expression)

where expression is the value to perform the function on. Available trigonometric functions are:

Functio
n

Description

TAN Tangent

SIN Sine

COS Cosine

SEC Secant

COT Cotangent

CSC Co-secant

ARC and Hyperbolic functions are available by prefixing the trigonometric function name with "ARC", "HYP",
or "HYPARC". For instance, "HYPARCSIN".

Other functions available:

Functio
n

Description

ABS Absolute value

DEG Radian to degree conversion

EXP Constant E raised to the specified power

FIB Fibonacci sequence

INT Integer

LOG Natural logarithm

LOG10 Common logarithm

RAD Degree to radian conversion

SGN Sign (returns -1 if negative, 1 if positive, or 0 if 0)

SQR Square root

Variables
A variable is either a defined variable or a component and attribute pair of the form:

name.attribute

where "name" is the name of a component, and "attribute" is the attribute of that component. Note that this

UOS Programmer's Manual

10 / 10

attribute must be numeric or the expression is invalid. For example:

Main.top

Variables are defined via the TUUI.Set_Variable method. The only pre-defined variable is "$margin", which
indicates the current margin (default is 8).

Created with the Personal Edition of HelpNDoc: Single source CHM, PDF, DOC and HTML Help creation

http://www.helpndoc.com/help-authoring-tool

	Title Page
	Preface
	Overview
	User Interface
	UUI
	TUUI Class
	TUUI_Component Class
	UUI Definitions

